Repression of shoot growth, a bZIP transcriptional activator, regulates cell elongation by controlling the level of gibberellins.
نویسندگان
چکیده
Cell expansion, a developmental process regulated by both endogenous programs and environmental stimuli, is critically important for plant growth. Here, we report the isolation and characterization of RSG (for repression of shoot growth), a transcriptional activator with a basic leucine zipper (bZIP) domain. To examine the role of RSG in plant development, we generated transgenic tobacco plants expressing a dominant-negative form of RSG, which repressed the activity of full-length RSG. In transgenic plants, this expression severely inhibited stem internode growth, specifically cell elongation. These plants also had less endogenous amounts of the major active gibberellin (GA) in tobacco, GA(1). Applying GAs restored the dwarf phenotypes of transgenic tobacco plants that expressed the dominant-negative form of RSG. To investigate the function of RSG in the regulation of the endogenous amounts of GAs, we identified a target for RSG. RSG bound and activated the promoter of Arabidopsis GA3, one of the genes encoding enzymes involved in GA biosynthesis. Moreover, the dominant-negative form of RSG decreased expression of the GA3 homolog in transgenic tobacco plants. Our results show that RSG, a bZIP transcriptional activator, regulates the morphology of plants by controlling the endogenous amounts of GAs.
منابع مشابه
14-3-3 proteins regulate intracellular localization of the bZIP transcriptional activator RSG.
Gibberellins (GAs) are essential regulators of many aspects of plant development, including stem elongation, seed germination, and flowering. RSG is a transcriptional activator with a basic leucine zipper domain that regulates endogenous amounts of GAs through the control of a GA biosynthetic enzyme. The ubiquitous expression of RSG in plant organs suggests an involvement of post-transcriptiona...
متن کاملInvolvement of 14-3-3 signaling protein binding in the functional regulation of the transcriptional activator REPRESSION OF SHOOT GROWTH by gibberellins.
REPRESSION OF SHOOT GROWTH (RSG) is a tobacco (Nicotiana tabacum) transcriptional activator with a basic Leu zipper domain that regulates endogenous amounts of gibberellins (GAs) by the control of a GA biosynthetic enzyme. The 14-3-3 signaling proteins have been suggested to suppress RSG by sequestering it in the cytoplasm. Here, we show that RSG phosphorylation on Ser-114 is important for 14-3...
متن کاملA novel Arabidopsis MYB-like transcription factor, MYBH, regulates hypocotyl elongation by enhancing auxin accumulation
Critical responses to developmental or environmental stimuli are mediated by different transcription factors, including members of the ERF, bZIP, MYB, MYC, and WRKY families. Of these, MYB genes play roles in many developmental processes. The overexpression of one MYB gene, MYBH, significantly increased hypocotyl elongation in Arabidopsis thaliana plants grown in the light, and the expression o...
متن کاملDistinct light-initiated gene expression and cell cycle programs in the shoot apex and cotyledons of Arabidopsis.
In darkness, shoot apex growth is repressed, but it becomes rapidly activated by light. We show that phytochromes and cryptochromes play largely redundant roles in this derepression in Arabidopsis thaliana. We examined the light activation of transcriptional changes in a finely resolved time course, comparing the shoot apex (meristem and leaf primordia) and the cotyledon and found >5700 differe...
متن کاملA triantagonistic basic helix-loop-helix system regulates cell elongation in Arabidopsis.
In plants, basic helix-loop-helix (bHLH) transcription factors play important roles in the control of cell elongation. Two bHLH proteins, PACLOBTRAZOL RESISTANCE1 (PRE1) and Arabidopsis ILI1 binding bHLH1 (IBH1), antagonistically regulate cell elongation in response to brassinosteroid and gibberellin signaling, but the detailed molecular mechanisms by which these factors regulate cell elongatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant cell
دوره 12 6 شماره
صفحات -
تاریخ انتشار 2000